

STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE

D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*

* Science Applications International Corp. San Diego, CA USA

**Los Alamos National laboratory Los Alamos, NM USA

MODERN TOKAMAKS ARE RICH IN MHD ACTIVITY

Example: DIII-D shot 86144

- Sawtoothing discharge
- •3/2 NTM triggered at 2250 msec
- •2/1 locks to the wall

IMPORTANCE OF REALISTIC MODELING

- Cost of next generation of fusion experiments estimated to be at least several billion \$\$
- Cost proportional to volume: \$ ~ V
- Power density proportional to square of max. pressure: $P/V \sim p_{\text{max}}^2$
 - => $\$ \sim 1/p_{\text{max}}^2$ for fixed P and B (engineering constraints)
- Physics uncertainties limit max. pressure to $\sim 2/3$ theoretical p_{max}

Uncertainties in nonlinear physics account for ~ 1/2 the cost of advanced fusion experiment!

 Predictive fluid modeling with realistic parameters has high leverage to remove this uncertainty

MODELING REQUIREMENTS

Slow evolution

Nonlinear fluid model required

Plasma shaping

Realistic geometry required

• High temperature

Realistic S required

Low collisionality

Extensions to resistive MHD required

Strong magnetic field

Highly anisotropic transport required

Resistive wall

Non-ideal boundary conditions required

2-FLUID MODEL

Maxwell (no displacement current):

$$\frac{\P \mathbf{B}}{\P t} = -\nabla \times \mathbf{E} \quad , \qquad \nabla \times \mathbf{B} = \mathbf{m}_0 \mathbf{J} \quad ,$$

• Momentum, energy, and continuity for each species (a = e, i):

$$\begin{split} m_{a}n_{a} \left(\frac{\P \mathbf{v}_{a}}{\P t} + \mathbf{v}_{a} \cdot \nabla \mathbf{v}_{a} \right) &= -\nabla \cdot \mathbf{P}_{a} + q_{a}n_{a} \left(\mathbf{E} + \mathbf{v}_{a} \times \mathbf{B} \right) + \sum_{b} \mathbf{R}_{ab} + \mathbf{S}_{a}^{m} \\ \frac{\P p_{a}}{\P t} + \mathbf{v}_{a} \cdot \nabla p_{a} &= -\frac{3}{2} p_{a} \nabla \cdot \mathbf{v}_{a} - \mathbf{P}_{a} : \nabla \mathbf{v}_{a} - \nabla \cdot \mathbf{q}_{a} + \mathbf{Q}_{a} \\ \frac{\P n_{a}}{\P t} &= -\nabla \cdot (n_{a} \mathbf{v}_{a}) + \mathbf{S}_{a}^{n} \end{split}$$

Current and quasi-neutrality:

$$J_a = n_a q_a v_a$$
, $n = n_e = Z n_i$

SINGLE FLUID FORM

Add electron and ion momentum equations:

$$r\left(\frac{\mathbf{n}\mathbf{v}}{\mathbf{n}t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla \cdot \mathbf{P}' + \mathbf{J} \times \mathbf{B}$$

Subtract electron and ion momentum equations (Ohm's law):

$$\mathbf{E} = - \underbrace{\mathbf{v} \times \mathbf{B}}_{Ideal\ MHD} + \underbrace{\frac{1}{ne} \frac{1-\mathbf{n}}_{1+\mathbf{n}}}_{Ideal\ MHD} \mathbf{J} \times \mathbf{B}$$

$$- \underbrace{\frac{1}{ne(1+\mathbf{n})} \nabla \cdot (\mathbf{P}'_{e} - \mathbf{n}\mathbf{P}'_{i})}_{Pressure\ Effects} + \underbrace{\frac{1}{ne} \frac{1-\mathbf{n}}{1+\mathbf{n}}}_{Hall\ Effect} \underbrace{\mathbf{I}}_{\mathbf{I}} + \nabla \cdot (\mathbf{v}\mathbf{J} + \mathbf{J}\mathbf{v})$$

$$\underbrace{\frac{1}{ne(1+\mathbf{n})} \nabla \cdot (\mathbf{P}'_{e} - \mathbf{n}\mathbf{P}'_{i})}_{Pressure\ Effects\ and\ Closures} + \underbrace{\frac{1}{ne} \frac{1-\mathbf{n}}{1+\mathbf{n}}}_{Hall\ Effect} \mathbf{J} \times \mathbf{B}$$

$$\underbrace{\frac{1}{ne} \frac{1-\mathbf{n}}{1+\mathbf{n}}}_{Hall\ Effect}$$

$$\underbrace{\frac{1}{ne} \frac{1}{1+\mathbf{n}}}_{Hall\ Effect}$$

$$\underbrace{\frac{1}{ne} \frac{1}{1+\mathbf{n}}}_{Hall\ Effect}$$

$$\underbrace{\frac{1}{ne} \frac{1}{1+\mathbf{n}}}_{Hall\ Effect}$$

$$\underbrace{\frac{1}{ne} \frac{1-\mathbf{n}}{1+\mathbf{n}}}_{Hall\ Effect}$$

MODELING GOALS

- Analysis and interpretation of experimental data
 - NIMROD can interface with common design and analysis codes
 - EFIT
 - TOQ
 - CHEASE
 - DIII-D has extensive data base
 - Study nonlinear phenomena
 - Tests both resistive and extended MHD models
- Analysis and evaluation of designs for advanced experiments
 - Example: VDE in ITER

DIII-D EXPERIMENTAL DISCHARGES

- Shot 87009
 - Highly shaped plasma
 - Disruption when heated through b limit
 - Why is growth faster than simple exponential?
 - What causes disruption?
 - Nonlinear resistive MHD
- Shot 86144
 - ITER-like discharge
 - Sawteeth
 - Nonlinear generation of secondary islands
 - Destabilization of NTM?
 - Tests both resistive MHD and closure models for Extended MHD

DIII-D SHOT #87009

• High-b disruption when heated slowly through critical $b_{\rm N}$

Growth is faster than simple exponential

EQUILIBRIUM AT t = 1681.7 msec

- Equilibrium reconstruction from experimental data
- Negative central shear
- Gridding based on equilibrium flux surfaces
 - Packed at rational surfaces
 - Bi-cubic finite elements

R

LINEAR STABILITY

- Present version of NIMROD requires conducting wall at outer flux surface
 - Critical $b_{\rm N}$ for ideal instability larger than in experiment
- NIMROD gives slightly larger ideal growth rate than GATO
- NIMROD finds resistive interchange mode below ideal stability boundary

THEORY OF SUPER-EXPONENTIAL GROWTH

- In experiment mode grows faster than exponential
- Theory of ideal growth in response to slow heating (Callen, Hegna, Rice, Strait, and Turnbull, Phys. Plasmas 6, 2963 (1999)):

Heat slowly through critical b: $b = b_c(1+g_h t)$

Ideal MHD: $w^2 = -\hat{g}_{MHD}^2(b/b_c - 1)$ \Rightarrow $g(t) = \hat{g}_{MHD}\sqrt{g_h t}$

Perturbation growth:

$$\frac{dx}{dt} = g(t)x \qquad \Rightarrow \qquad x = x_0 \exp[(t/t)^{3/2}], \qquad t = (3/2)^{2/3} \hat{g}_{MHD}^{-2/3} g_h^{-1/3}$$

Good agreement with experimental data

NONLINEAR SIMULATION WITH NIMROD

- Initial condition: equilibrium below ideal marginal $b_{\rm N}$
- Use resistive MHD
- Impose heating source proportional to equilibrium pressure profile

$$\frac{\P P}{\P t} = \dots + g_H P_{eq}$$

 Follow nonlinear evolution through heating, destabilization, and saturation Log of magnetic energy in n = 1 mode vs. time $S = 10^6$ Pr = 200 $g_H = 10^3$ sec⁻¹

SCALING WITH HEATING RATE

- NIMROD simulations also display super-exponential growth
- Simulation results with different heating rates are well fit by $x \sim \exp[(t-t_0)/t]^{3/2}$
- Time constant scales as

$$t \sim g_{MHD}^{-0.72} g_H^{-0.28}$$

Compare with theory:

$$t = (3/2)^{2/3} \hat{g}_{MHD}^{-2/3} g_h^{-1/3}$$

 Discrepancy possibly due to non-ideal effects

Log of magnetic energy vs. $(t - t_0)^{3/2}$ for 2 different heating rates

EVOLUTION OF MAGNETIC FIELD LINES

- Simulation with small but finite resistivity
- Ideal mode yields stochastic field lines in late nonlinear stage
- Implications for degraded confinement
- Disruption?

DIII-D SHOT #86144

- Sawtoothing discharge
- •3/2 NTM triggered at 2250 msec
- •2/1 locks to the wall

EQUILIBRIUM AT t = 2250 msec

Grid (Flux Surfaces)

q - profile

- ITER-like discharge
- q(0) slightly below 1

DISCHARGE IS UNSTABLE TO RESISTIVE MHD

Pressure and field lines

$$S = 10^7$$
 Pr = 10^3 $g = 4.58 \times 10^3$ / sec $g_{\rm exp} \sim 1.68 \times 10^4$ / sec

SECONDARY ISLANDS IN RESISTIVE MHD

- Secondary islands are small in resistive MHD $-W_{\rm exp} \sim 0.1~{\rm m}$
- 3/2 island width decreases with increasing S
- Need extended MHD to match experiment

NUMERICALLY TRACTABLE CLOSURES

- Resistive MHD is insufficient to explain DIII-D shot 86144
 - 3/2 magnetic island is too small
- Parallel variation of B leads to trapped particle effects
- Particle trapping causes neo-classical effects
 - Poloidal flow damping
 - Enhancement of polarization current
 - Bootstrap current
- Simplified model captures most neo-classical effects (T. A. Gianakon, S. E. Kruger, C. C. Hegna, Phys. Plasmas (to appear) (2002))

$$\nabla \cdot \Pi_{a} = m_{a} n_{a} m_{a} \langle B_{0} \rangle^{2} \frac{\mathbf{v}_{a} \cdot \nabla q}{(\mathbf{B}_{0} \cdot \nabla q)^{2}} \nabla q$$

• For electrons, ideal MHD equilibrium yields bootstrap current

$$\nabla \cdot \Pi_{e} = -\frac{r_{e} m_{e}}{ne} \frac{\langle B \rangle^{2}}{B^{2}} \frac{\mathbf{B}_{0} \times \nabla p \cdot \nabla q}{(\mathbf{B}_{0} \cdot \nabla q)^{2}} \nabla q$$

CLOSURES REPRODUCE NTM INSTABILITY

- TFTR-like equilibrium
- Comparison with modified Rutherford equation
- Initialize NIMROD with various seed island sizes
- Look for growth or damping
- Seek self-consistent seed and growth

86144.2250 NTM STABILITY BOUNDARIES

- Use modified Rutherford equation
- 3 values of anisotropic heat flux
- 2 values of D¢
 - Vacuum
 - Reduced by factor of 10
- Experimental island width ~ 0.1 m

SELF-CONSISTENT NTM MAY REQUIRE HIGHER S

- W_{3/2} versus time with NTM closure
- W_{exp} ~ 0.1 m
- Island width exceeds analytic threshold
- No NTM observed
- Island width less than visco-resistive layer width at low S
- Calculations at larger S are underway

Nonlinear NTM calculations are extremely challenging!

SUMMARY

- Nonlinear modeling of experimental discharges is possible, but extremely challenging
- DIII-D shot #87009
 - Heating through b limit
 - Super-exponential growth, in agreement with experiment and theory
 - Nonlinear state leads to stochastic fields
 - Calculations with anisotropic thermal transport underway
- DIII-D shot #86144
 - Secondary islands driven by sawtooth crash
 - Resistive MHD insufficient, requires neo-classical closures
 - Must go to large S (~10⁷) to get proper length scales
 - Calculations are underway

